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Fig. 4. Calculated fractional power distributions for the TM01–TE11 mode
converter of Case (a) (solid line) and Case (c) (dashed line) in Table II.

TABLE II
OPTIMIZED CHARACTERISTIC RESULTS FORTM01–TE11

MODE CONVERTERS FORMED BY NONCONSTANTLY

BENT WAVEGUIDES (f0 = 35 GHz, a0 = 13:6 mm)

cubic parabola mode converter has an antisymmetry about its center
(x = 0), and the Gaussian mode converter takes a segment of the
Gaussian curve’s left side (x < 0). The two additional, continuous
phase-rematching small perturbations"2 and"3 are used to suppress
the TM11 and TE21, respectively. All the calculated results of the
three TM01–TE11 mode converters forf0 = 35 GHz anda0 = 13:6

mm, corresponding to Cases (a), (b), and (c) are summarized in Table
II. Fig. 4 demonstrates the normalized power distributions for Cases
(a) and (c ) in Table II. The distributions for Case (b) are similar to
that of Case (c) and are not plotted in Fig. 4.

IV. CONCLUSION

Direct short TM01–TE11 mode converters with high conversion ef-
ficiencies and large bandwidth factors may be realized by bent waveg-
uides with elaborately chosen shapes and optimized geometrical
dimensions. Five examples of TM01–TE11 mode converters with
different structures forf0 = 35 GHz and waveguide radiusa0 = 27:2

mm are presented, with each one having its own features. All of

the five mode converters can have high conversion efficiencies of
� > 97:5% and large bandwidth factors (for� � 90%) of greater
than 21%.
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Characteristic Impedance of a Rectangular
Double-Ridged TEM Line

Khona Garb and Raphael Kastner

Abstract— The characteristic impedance of a TEM transmission line,
shaped as a double-ridged rectangular coaxial line, is analyzed in this
paper as the customary transversal static problem. This type of trans-
mission line is useful, for example, as a part of a cascaded transition
between a double-ridged waveguide and a coaxial line. The solution of the
transversal problem is achieved by dividing the cross-sectional region into
distinct, separable regions, each one being characterized by a closed-form
Green’s functions relating the flux function to the electric field. Surface-
type integral equations are then formulated over the boundaries between
the regions. Solution of these equations via the method of moments
(MoM’s) using the Galerkin choice yields the results for the characteristic
impedance as a function of cross-sectional dimensions. Convergence of
the solution is also studied.

Index Terms—Characteristic impedance, Galerkin method, ridged
TEM line.

I. INTRODUCTION

Transmission lines operating in the TEM regime are widely used in
microwaves circuits. In many cases, TEM and non-TEM devices need
to be connected in a cascaded configuration, requiring a transition
between the two types of lines. Such a transition would possess some
of the geometrical features of the two lines at both ends. In the case
treated in this paper, a transition between a coaxial TEM line and
a double-ridged waveguide has been devised. Several rectangular
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Fig. 1. Cross section of a rectangular ridged TEM line.

TEM configurations have been reported in the literature [1]–[3].
The configuration chosen in this paper is a double-ridged coaxial
transmission line with rectangular cross section as seen in Fig. 1. In
the absence of the ridges(t1 = t2 = 0), the transmission line of Fig.
1 becomes a rectangular coaxial line. For this line, the characteristic
impedanceZ0 for the case of a symmetric position of the inner
conductor(d1 = d2) has been evaluated in the literature by a number
of methods [4]–[6]. In [4], the conformal mapping technique has been
used to derive closed-form expressions forZ0. The relaxation process
was utilized in [5] to solve finite-difference equations, resulting in
a comprehensive set of graphs ofZ0 as a function of the cross-
sectional dimensions. An improved approximation forZ0 is given in
[6] for the symmetrical rectangular coaxial line. A summary of data
for calculatingZ0 for many rectangular TEM configurations can be
found in [2].

The examples cited above do not include the case of the ridged
TEM line, which apparently has not received attention in the literature
to date. Out of several methods eligible for the solution of this
problem, the authors have chosen the surface integral equation
approach. This approach takes advantage of the fact that the cross
section can be divided into a finite number of separable regions, such
that the problem can be defined over the interfaces between adjacent
regions. The computational domain is thus limited to a set of straight
lines rather than to the cross-sectional plane in its entirety. Within
each one of these regions, the known analytical Green’s function
is used to generate a surface description of the region, relating the
tangential electric field and the flux function. The different regions
are joined together by invoking the requirement that the flux function
and its normal derivative be continuous across the interfaces. More
specifically, the problem is defined over the lines denotedA1 andA2,
forming the interfaces between regions1 and 3 and between2 and
3, respectively (see Fig. 1). The remaining (conducting) boundaries
are already included in the formulation of the Green’s functions.
The boundary condition leads to a set of integral equations for the
tangential electric fieldEi(y) on Ai; (i = 1; 2). This system of
integral equations is discretized using the Galerkin version of the
method of moments (MoM’s) with entire domain cosinusoidal basis
and testing functions. The solution of the integral equation is then
used for the evaluation of the capacitance per-unit length and the
characteristic impedanceZ0, both expressed as functionals ofEi(y).
The convergence of the method is discussed, and it is shown that
the values ofZ0 tend to increase with an increasing number of basis
functions. It is thus concluded that the true value ofZ0 is an upper
bound value for the numerical calculations.

II. I NTEGRAL EQUATION FORMULATION

The cross-sectional structure of the ridged TEM line (Fig. 1)
exhibits symmetry around the planex = 0, allowing for the problem
to be defined over the regionx > 0 only. Using the Green’s theorem,
which relatesEi(y) to the flux function, and the continuity of the
flux function and its normal derivative across the boundaries on
Ai, (i = 1; 2), one can formulate the following system of integral
equations in they-directed component of the electric fieldEi(y) on
the interfaces
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such thatGi is the Green’s function for region#i, andyi is defined
over interfaceAi. These functions are constructed in accordance with
the Dirichlet boundary condition alongx = 0 for regions1 and2, and
the Neumann condition over all other surfaces for each region. The
unknownsBi in the system of (1), (2) are constants, stemming from
the fact that the balance between the flux values on both sides of the
interfaces can only be determined up to a constant. These constants
are dependent upon the excitation (i.e., they are proportional to the
potential differenceU between the outer and inner conductors).U

is defined as follows:

U =
A

dy1E1(y1) = �
A

dy2E2(y2): (6)

Equations (1) and (2) are thus used jointly with the constraint (6).U

can be chosen arbitrarily, resulting in proportional values forB1 and
B2. A convenient choice would beU = 1.

The capacitance per-unit lengthC via energy calculations is now
evaluated. The electrical energy stored in the transmission line per-
unit length can be expressed as the following surface integral over
the cross section:
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TABLE I
CONVERGENCE OF THECHARACTERISTIC IMPEDANCE OF A

SQUARE COAXIAL LINE USING THE GALERKIN PROCEDURE

where � is the dielectric permittivity of the medium between the
conductors. Equation (7) can also be interpreted, in view of (1), (2)
as follows:

W = � B1

A
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A

dy2E2(y2) : (8)

The capacitanceC then becomes
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using the definitions (6) forU . ChoosingU = 1 and computingB1

andB1 accordingly, one obtains

C = 2�[B1 �B2]F=m: (10)

The characteristic impedance of the line may now be found forC via

Z0 =
1
p
�r
�0

1

C=�
: (11)

Here, �r is the relative permittivity of the medium, and�0 =

376:678
 is the free-space wave impedance.

III. N UMERICAL SOLUTION OF THE PROBLEM

The system of (1), (2) is solved by the MoM’s, whereEi(y) is
expanded by a series of cosinusoidal basis functions, as follows:

Ei(yi) =

N

�=1

D
(i)
� �

(i)
� (yi)

�
(i)
� (yi) =

1

di
cos

(� � 1)�yi

di
; � = 1; 2; � � � ; Ni (12)

andy1;2 are defined in (4). Testing (1), (2) by the Galerkin scheme,
one obtains the system of linear algebraic equations of the order
N = N1 + N2 + 2. Solution of this system yields the coefficients
D

(i)
� as well asBi.

(a)

(b)

(c)

Fig. 2. Characteristic impedance of a rectangular ridged TEM line versus
inner conductor heightt; b=a = 0:5; s=a = 0:25; t2=a = 0. (a): t1 = 0:05.
(b): t1 = 0:10.(c): t1 = 0:15.

The results computed in this way are presented in Table I. They
illustrate the stable convergence characteristics of the impedanceZ0
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of the square coaxial line(a = b; s = t; t1 = t2 = 0) as the number
of basis functionsN1 = N2 is increased. In the last line of Table I
the exact values for the square coaxial line are listed as quoted from
[2]. One may observe that the values ofZ0 tend to increase with
an increasing number of basis functions, such that asN1 ! 1 the
value ofZ0 as computed here increases monotonically toward the
exact value.

For the case of the rectangular coaxial line, computed withN1 =
N2 = 20, the authors’ results coincide with those from [5]. Fig. 2
shows the characteristic impedance as a function of the height of
the inner conductort, with various other parameters. These figures
can be used for design purposes when transitions between ridged
waveguides and coaxial lines are needed.
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Propagation Characteristics of a Dielectric-Coated
Coaxial Helical Waveguide in a Lossy Medium

Takahiro Iyama and Jun-ichi Takada

Abstract—In this paper, the authors discuss the propagation character-
istics of a dielectric-coated coaxial helical waveguide in a lossy medium.
The authors place emphases on the phase constant, propagation modes,
magnetic fields distribution, and attenuation constant. When permittivity
of the internal region is relatively small, two propagation modes exist
and dominant components of their magnetic fields are different. Lastly,
the authors discuss the relation between the attenuation constant and
permittivities.

Index Terms—Absorbing media, helical waveguide, hyperthermia.

I. INTRODUCTION

Coaxial helical waveguides have been studied by Hill and Wait
[1], Wait [2], Mirotznik et al. [3], and other researchers. In those
papers, the bared or noncoated helices were discussed. In this paper,
the authors discuss the theoretical propagation characteristics of a
dielectric-coated coaxial helical waveguide in a lossy medium. This
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Fig. 1. Perspective view of a dielectric-coated coaxial helical waveguide
constructed of three layers.

structure corresponds to the coaxial helical applicator for microwave
hyperthermia which is covered with a catheter.

II. FORMULATION

The analysis model is shown in Fig. 1. The inner conductor of
radiusa is perfectly conducting, and the helical wire is wound at
� = b with pitch angle . The model is divided into three regions as:

a < � < b: region1 (permittivity "1)

b < � < c: region2 (permittivity "2)

c < �: region3 (permittivity "3):

The permeability�0 is constant for all regions. The authors assume
that the variations of the electric and magnetic fields in thez-direction
is exp (�
 � z) and those in the�-direction is constant;
 is the
complex propagation constant along thez-direction. At � = b, the
boundary conditions are represented by the sheath helix model, i.e.,
the cylindrical surface at� = b is assumed to have anisotropic
conductivity that the surface current can flow along only the -
direction. With those assumptions, the authors obtain the following
Maxwell’s equations in the cylindrical coordinates:
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where! is the angular frequency. The appropriate solutions in region
1 and 2 are
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