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the five mode converters can have high conversion efficiencies of

ﬁ 1.0 7 > 97.5% and large bandwidth factors (for > 90%) of greater
2038 than 21%.
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) W;=0.2781m | W;=0.2796m | W;=0.2798m Characteristic Impedance of a Rectangular
r°“i‘1°°"Y°“er Double-Ridged TEM Line
Om;r;tg;l;-w . 0.7008m 0.4749m 0.4715m
levels: TMog 0.0125 0.0010 0.0002 Khona Garb and Raphael Kastner
TEy 0.9756(1) 0.9857(n) 0.9887(1)
My 0.0001 0.0025 0.0004 o o
TExn 0.0005 0.0016 0.0003 Abstract— The characterlstlc impedance of_ a TEM transmission ||ne,_
TEo1 0.0012 0.0027 0.0040 shaped as a double-ridged rectangular poaX|aI line, |s‘analyzed in this
Power transmission ' paper as the customary transversal static problem. This type of trans-
efficiency: Py 0.9900 0.9935 0.9936 mission line is usgful, for example, as a part_of a cascaded t‘ransition
Bandwidth factor ' between a double-ridged waveguide and a coaxial line. The solution of the
M290%): Af/fy 21.1% 28.2% 27.1% transversal problem is achieved by dividing the cross-sectional region into

distinct, separable regions, each one being characterized by a closed-form
Green'’s functions relating the flux function to the electric field. Surface-
type integral equations are then formulated over the boundaries between
the regions. Solution of these equations via the method of moments
cubic parabola mode converter has an antisymmetry about its ceriiéwsM’s) using the Galerkin choice yields the results for the characteristic

(x = 0), and the Gaussian mode converter takes a segment of '{rﬁgedan_ce as a function of cross-sectional dimensions. Convergence of
Gaussian curve’s left sider (< 0). The two additional, continuous € Solution is also studied.

phase-rematching small perturbationsandess are used to suppress Index Terms—Characteristic impedance, Galerkin method, ridged
the TM;; and TE, respectively. All the calculated results of thelEM line.
three TMy1—TE;; mode converters fofy = 35 GHz andao = 13.6

mm, corresponding to Cases (a), (b), and (c) are summarized in Table

Il. Fig. 4 demonstrates the normalized power distributions for Cases

(a) and (c ) in Table II. The distributions for Case (b) are similar to 'ransmission lines operating in the TEM regime are widely used in
that of Case (c) and are not plotted in Fig. 4. microwaves circuits. In many cases, TEM and non-TEM devices need

to be connected in a cascaded configuration, requiring a transition
between the two types of lines. Such a transition would possess some
of the geometrical features of the two lines at both ends. In the case
Direct short TM:—TE;; mode converters with high conversion ef+reated in this paper, a transition between a coaxial TEM line and

ficiencies and large bandwidth factors may be realized by bent wavegdouble-ridged waveguide has been devised. Several rectangular
uides with elaborately chosen shapes and optimized geometrical
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A Il. INTEGRAL EQUATION FORMULATION

The cross-sectional structure of the ridged TEM line (Fig. 1)
exhibits symmetry around the plare= 0, allowing for the problem
to be defined over the regian> 0 only. Using the Green'’s theorem,

>l

i

—
©

4 i which relatesE;(y) to the flux function, and the continuity of the
dl @ EAL flux function and its normal derivative across the boundaries on
v | A;, ({ = 1,2), one can formulate the following system of integral
4 equations in the-directed component of the electric fiekd (y) on
b ; the interfaces
i == ; / Ay [Gr (v, yy) + Galyr, v B (y))
&2 @ a2 A
1
v - + [ WG ) Eatit) = By &)
1 Az
X 2 [ > . .
e e — X / Ay Ga(y2, y1) Er (y1) +/ dys[Ga(y2, y2)
- a —p Ay Ag
1 !
Fig. 1. Cross section of a rectangular ridged TEM line. + Ga(y2,92)|B2(y) = B )
where
TEM configurations have been reported in the literature [1]-[3]. , 1ls 241 nwy
The configuration chosen in this paper is a double-ridged coaxial Gi(yi,yi) = AP + P Z 5, cos <d—>
transmission line with rectangular cross section as seen in Fig. 1. In b n=1" '
the absence of the ridgés, = t, = 0), the transmission line of Fig. cos <"7F?li )tanh <@>} i=1.2 ®)
1 becomes a rectangular coaxial line. For this line, the characteristic d; 2d; )|’
impedanceZ, for the case of a symmetric position of the innekyith
conductor(d, = d2) has been evaluated in the literature by a number o o
of methods [4]-[6]. In [4], the conformal mapping technique has been gr=yi ~(tdatt)andgs =y — o “)
used to derive closed-form expressionsZgr The relaxation process (see Fig. 1), and
was utilized in [5] to solve finite-difference equations, resulting in 5 oo
. R ; 2 1 nwy;

a comprehensive set of graphs 8f as a function of the cross- Gs(yi,y;) = — Z - cos( )
sectional dimensions. An improved approximation fris given in T b
[6] for the symmetrical rectangular coaxial line. A summary of data nrTy) nwy ..
for calculatingZ, for many rectangular TEM configurations can be cos <T> coth ( b ) hi=12 ®)
found in [2].

h thatG; is the G ’s function f iofti, andy; is defined
The examples cited above do not include the case of the ridg%? att, Is the Green's function for regiogt/, andy; Is define

. i . o . er interfaced;. These functions are constructed in accordance with
TEM line, which apparently has not received attention in the I|terr:1tu[ﬁ-e Dirichlet boundary condition along= 0 for regionsl and2, and
to date. Out of several methods eligible for the solution of thi '

he Neumann condition over all other surfaces for each region. The

problem, the authors have chosen the surface integral equamnownsBi in the system of (1), (2) are constants, stemming from

appr_oach. This gpproa_ch takt_es_ advantage of the fact tha@ the Cife5tact that the balance between the flux values on both sides of the
section can be divided into a finite number of separable regions, SUSL rfaces can only be determined up to a constant. These constants

that. the problem can b.e defined over the |n'Ferfaces between adjg ethdependent upon the excitation (i.e., they are proportional to the
regions. The computational domain is thus limited to a set of strai 6tential differencel’ between the outer and inner conductoi)
lines rather than to the cross-sectional plane in its entirety. Withg defined as follows: '

each one of these regions, the known analytical Green’s function . .
is used to generate a surface description of the region, relating the U= / dy1E1(y1) = —/ dys Fs(y2)- (6)
tangential electric field and the flux function. The different regions At Az
are joined together by invoking the requirement that the flux functidnquations (1) and (2) are thus used jointly with the constraint{(6).
and its normal derivative be continuous across the interfaces. M@an be chosen arbitrarily, resulting in proportional valuesBoprand
specifically, the problem is defined over the lines denotednd 4>, B:. A convenient choice would b& = 1.
forming the interfaces between regiohsand 3 and betweer?2 and The capacitance per-unit length via energy calculations is now
3, respectively (see Fig. 1). The remaining (conducting) boundariegaluated. The electrical energy stored in the transmission line per-
are already included in the formulation of the Green's functionshit length can be expressed as the following surface integral over
The boundary condition leads to a set of integral equations for tHge cross section:
tangential electric fieldE;(y) on A;,(i = 1,2). This system of - :16/|E|2d5
integral equations is discretized using the Galerkin version of the 2
method of moments (MoM’s) with entire domain cosinusoidal basis - - , , , ,
and testing functions. The solution of the integral equation is then 26{/ dyy / Ay B (y0)]Gi(y1,91) + Ga(yr, y)] B ()

. . . Ay Ay
used for the evaluation of the capacitance per-unit length and the . .
characteristic impedancé,, both expressed as functionals Bf(y). + 2/ dy: / dys By (11)G3(y1,y5) B2 (y5)
The convergence of the method is discussed, and it is shown that _‘41 _‘42
the v_alues O‘Zo tend to increase with an increasing n_umber of basis / dyz/ dyy Bo (y2)[Ga(y2. yb) + G (ya. y.;)]EQ(yg)}
functions. It is thus concluded that the true valueZafis an upper Ay Ag
bound value for the numerical calculations. (7
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TABLE | 100 N
CONVERGENCE OF THECHARACTERISTIC IMPEDANCE OF A
SQUARE COAXIAL LINE USING THE GALERKIN PROCEDURE
Ni=N | 2=1]52=3|2=512=07]2=9
1 113.05 | 63.51 | 35.84 | 17.79 | 5.056 G
2 126.57 | 65.90 | 36.52 | 17.95 | 5.069 N
3 129.52 | 66.37 | 36.66 | 17.99 | 5.072
4 130.65 | 66.55 | 36.71 18.00 | 5.073
5 131.21 | 66.64 | 36.74 | 18.01 | 5.074
6 131.55 | 66.69 | 36.76 | 18.01 | 5.075
7 131.77 | 66.73 | 36.77 18.01 5.075 ] 4 /az Y- 5 05
8 13192 | 66.76 | 36.77 | 18.02 | 5.075 43 » o2 B e
e P B S L U N B A B
9 132.04 66.78 36.78 18.02 5.075 000 005 010 015 020 025 030 035 040
10 132.12 | 66.79 | 36.78 | 18.02 | 5.075 a
11 132.19 | 66.80 | 36.79 | 18.02 | 5.075
12 13225 | 66.81 | 36.79 | 18.02 | 5.075 @)
13 132.29 | 66.82 | 36.79 | 18.02 | 5.075
15 132.36 | 66.83 | 36.80 | 18.02 | 5.075
16 132.39 | 66.83 | 36.80 | 18.02 | 5.075
17 132.41 | 66.84 | 36.80 | 18.02 | 5.075
18 132.43 | 66.84 | 36.80 | 18.02 | 5.075
19 132.45 | 66.84 | 36.80 | 18.02 [ 5.075
20 132.47 | 66.85 | 36.80 | 18.02 [ 5.075
2] 132.65 | 66.87 | 36.81 | 18.02 | —— S
N
where € is the dielectric permittivity of the medium between the
conductors. Equation (7) can also be interpreted, in view of (1), (2)
as follows: ]
. . 10 { ~
W= e[Bl / dy: Ex(y1) + B / dyzEQ(yz)}. ®) a3 232 s 0
Aq Ao 0 LA B B A A BN B T T
The Capacitancé7 then becomes 0.00 005 010 015 O./ZO 025 030 035 0.40
. t/a
2‘/17 p B1 Bg b
C="2 =2 + 9 ®)
e |:fAI dy1 E1 (1) fAz d’yQEz(yz)} 9) o 7
1
using the definitions (6) fot’. Choosingll = 1 and computingB; % :
and B; accordingly, one obtains 1
80 |
C = 2¢[By — B2] F/m. (20) ]
70 5
The characteristic impedance of the line may now be found foia 1
60 4
Zo = ¢y (11) a 5
N N
Here, ¢, is the relative permittivity of the medium, an¢y = 40 4
376.678¢2 is the free-space wave impedance. 30 \
20 7 \\
lll. NUMERICAL SOLUTION OF THE PROBLEM ] A
The system of (1), (2) is solved by the MoM's, whekg(y) is " id/a=25 2 s 105
expanded by a series of cosinusoidal basis functions, as follows: O R R I T o e e B R
N 0.00 005 010 015 020 025 030 035 040
Ei(y) =S DI\ (w0) : va
v=1 (C)
(1) () — l (v = D)myi —1.2.....N; Fig. 2. Characteristic impedance of a rectangular ridged TEM line versus
(@) = d; cos { d; ’ v=12--N: (12) inner conductor height b/a = 0.5, s/a = 0.25, ta/a = 0.(a): t; = 0.05.

i . . . (b): t1 = 0.10.(c): t; = 0.15.
andyi 2 are defined in (4). Testing (1), (2) by the Galerkin scheme,

one obtains the system of linear algebraic equations of the order
N = N + Nz + 2. Solution of this system yields the coefficients The results computed in this way are presented in Table I. They
DY as well asB;. illustrate the stable convergence characteristics of the impedance
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of the square coaxial linéx = b, s = ¢,t; =t = 0) as the number
of basis functionsV, = N, is increased. In the last line of Table |
the exact values for the square coaxial line are listed as quoted from
[2]. One may observe that the values &§ tend to increase with
an increasing number of basis functions, such thaVas— oo the
value of Z, as computed here increases monotonically toward the
exact value.

For the case of the rectangular coaxial line, computed With=
Ny = 20, the authors’ results coincide with those from [5]. Fig. 2
shows the characteristic impedance as a function of the height of
the inner conductot, with various other parameters. These figures
can be used for design purposes when transitions between ridged
waveguides and coaxial lines are needed.

(1]

(2]
(3]

(4]
(5]

(6]

Abstract—n this paper, the authors discuss the propagation character-
istics of a dielectric-coated coaxial helical waveguide in a lossy medium.
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The permeabilityu is constant for all regions. The authors assume
that the variations of the electric and magnetic fields in:ttirection

Propagation Characteristics of a Dielectric-Coated is exp (—v - z) and those in thes-direction is constanty is the
Coaxial Helical Waveguide in a Lossy Medium complex propagation constant along thelirection. Atp = b, the
boundary conditions are represented by the sheath helix model, i.e.,
Takahiro lyama and Jun-ichi Takada the cylindrical surface ap = b is assumed to have anisotropic

conductivity that the surface current can flow along only the
direction. With those assumptions, the authors obtain the following
Maxwell's equations in the cylindrical coordinates:

The authors place emphases on the phase constant, propagation modes, O H 10H
magnetic fields distribution, and attenuation constant. When permittivity Py g (wzglto + A,?)HZ =0 1)
of the internal region is relatively small, two propagation modes exist 0p? p Op '
and dominant components of their magnetic fields are different. Lastly, jwpe OH.
the authors discuss the relation between the attenuation constant and Es = m ap (2)
permittivities. . -
O’°E. 10E. 2 2
Index Terms—Absorbing media, helical waveguide, hyperthermia. 9,2 > oy + (wepo+ " )E. =0 (3)
jwe OF.
H¢' = zﬁj 2 (4)
I. INTRODUCTION w2epo +v2 dp

Coaxial helical waveguides have been studied by Hill and Wajjhere., is the angular frequency. The appropriate solutions in region

(1],

Wait [2], Mirotznik et al. [3], and other researchers. In those; gnd 2 are

papers, the bared or noncoated helices were discussed. In this paper,

the authors discuss the theoretical propagation characteristics of a  H. = A;Io(kip) + B: Ko(kip) 5)
dielectric-coated coaxial helical waveguide in a lossy medium. This jwp ’ o
By = = 2L ALy (rip) + BiKo(rip)] ®)
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